Z-Axis Micromachined Tuning Fork Gyroscope with Low Air Damping

نویسندگان

  • Minh Ngoc Nguyen
  • Nhat Sinh Ha
  • Quang Nguyen
  • Hoang Manh Chu
  • Hiroshi Toshiyoshi
چکیده

This paper reports on the design and fabrication of a z-axis tuning fork gyroscope which has a freestanding architecture. In order to improve the performance of the tuning fork gyroscope by eliminating the influence of the squeeze-film air damping, the driving and sensing parts of the gyroscope were designed to oscillate in-plane. Furthermore, by removing the substrate underneath the device, the slide-film air damping in the gap between the proof masses and the substrate was eliminated. The proposed architecture was analyzed by the finite element method using ANSYS software. The simulated frequencies of the driving and sensing modes were 9.788 and 9.761 kHz, respectively. The gyroscope was fabricated using bulk micromachining technology. The quality factor and sensitivity of the gyroscope operating in atmospheric conditions were measured to be 111.2 and 11.56 mV/°/s, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Fork Z-Axis Quartz Micromachined Gyroscope

A novel multi-fork z-axis gyroscope is presented in this paper. Different from traditional quartz gyroscopes, the lateral electrodes of the sense beam can be arranged in simple patterns; as a result, the fabrication is simplified. High sensitivity is achieved by the multi-fork design. The working principles are introduced, while the finite element method (FEM) is used to simulate the modal and ...

متن کامل

A Z-Axis Quartz Cross-Fork Micromachined Gyroscope Based on Shear Stress Detection

Here we propose a novel quartz micromachined gyroscope. The sensor has a simple cross-fork structure in the x-y plane of quartz crystal. Shear stress rather than normal stress is utilized to sense Coriolis' force generated by the input angular rate signal. Compared to traditional quartz gyroscopes, which have two separate sense electrodes on each sidewall, there is only one electrode on each si...

متن کامل

Vibration Sensitivity Reduction of Micromachined Tuning Fork Gyroscopes through Stiffness Match Method with Negative Electrostatic Spring Effect

In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness misma...

متن کامل

A Novel X-Axis Tuning Fork Gyroscope with "8 Vertical Springs-Proofmass" Structure on (111)-Silicon

A novel x-axis tuning fork MEMS gyroscope with “8 vertical springs-proofmass” structure for Coriolis effect detection is presented. Compared with the common single-plane springs, the 8 vertical springs, symmetrically located at the top and bottom sides, more stably suspend the large thick proofmass featuring large capacitance variation and low mechanical noise. A bulkmicromachining technology i...

متن کامل

Gas Damping Coefficient Research for the Mems Comb Linear Vibration Gyroscope

Silicon-MEMS gyroscope is an important part of MEMS ( Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of the MEMS gyroscope. Different air pressure causes different gas damping coefficient for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017